Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Environ Sci Pollut Res Int ; 30(48): 105030-105055, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37725301

RESUMO

Globally, industrialisation and urbanisation have led to the generation of hazardous waste (HW). Sustainable hazardous waste management (HWM) is the need of the hour for a safe, clean, and eco-friendly environment and public health. The prominent waste management strategies should be aligned with circular economic models considering the economy, environment, and efficiency. This review critically discusses HW generation and sustainable management with the strategies of prevention, reduction, recycling, waste-to-energy, advanced treatment technology, and proper disposal. In this regard, the major HW policies, legislations, and international conventions related to HWM are summarised. The global generation and composition of hazardous industrial, household, and e-waste are analysed, along with their environmental and health impacts. The paper critically discusses recently adapted management strategies, waste-to-energy conversion techniques, treatment technologies, and their suitability, advantages, and limitations. A roadmap for future research focused on the components of the circular economy model is proposed, and the waste management challenges are discussed. This review stems to give a holistic and broader picture of global waste generation (from many sources), its effects on public health and the environment, and the need for a sustainable HWM approach towards the circular economy. The in-depth analysis presented in this work will help build cost-effective and eco-sustainable HWM projects.


Assuntos
Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Resíduos Perigosos , Saúde Pública , Políticas , Gestão da Segurança , Reciclagem , Resíduos Sólidos
2.
Environ Sci Technol ; 57(36): 13449-13462, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642659

RESUMO

Assessing the prospective climate preservation potential of novel, innovative, but immature chemical production techniques is limited by the high number of process synthesis options and the lack of reliable, high-throughput quantitative sustainability pre-screening methods. This study presents the sequential use of data-driven hybrid prediction (ANN-RSM-DOM) to streamline waste-to-dimethyl ether (DME) upcycling using a set of sustainability criteria. Artificial neural networks (ANNs) are developed to generate in silico waste valorization experimental results and ex-ante model the operating space of biorefineries applying the organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS). Aspen Plus process flowsheeting and ANN simulations are postprocessed using the response surface methodology (RSM) and desirability optimization method (DOM) to improve the in-depth mechanistic understanding of environmental systems and identify the most benign configurations. The hybrid prediction highlights the importance of targeted waste selection based on elemental composition and the need to design waste-specific DME synthesis to improve techno-economic and environmental performances. The developed framework reveals plant configurations with concurrent climate benefits (-1.241 and -2.128 kg CO2-eq (kg DME)-1) and low DME production costs (0.382 and 0.492 € (kg DME)-1) using OFMSW and SS feedstocks. Overall, the multi-scale explorative hybrid prediction facilitates early stage process synthesis, assists in the design of block units with nonlinear characteristics, resolves the simultaneous analysis of qualitative and quantitative variables, and enables the high-throughput sustainability screening of low technological readiness level processes.


Assuntos
Clima , Éteres Metílicos , Estudos Prospectivos , Ensaios de Triagem em Larga Escala , Esgotos
3.
Ecotoxicol Environ Saf ; 262: 115318, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37531927

RESUMO

Cellulose nanocrystals (CNC) are recognized as promising bio-based flocculants for controlling harmful algal blooms (HABs). Due to the charge shielding effect in seawater and the strong mobility of algae cells, CNC can't effectively remove Phaeocystis globosa from seawater. To solve this problem, peroxymonosulfate (PMS) was used to enhance the coagulation of CNC for rapidly removal of P. globosa. The results showed that 91.7% of Chl-a, 95.2% of OD680, and 97.2% of turbidity of P. globosa were reduced within 3 h with the use of 200 mg L-1 of CNC and 20 mg L-1 of PMS. The removal of P. globosa was consisted of inactivation and flocculation. Notably, electron paramagnetic resonance (EPR) spectrums and quenching experiments revealed that the inactivation of P. globosa was dominated by PMS oxidation and 1O2. Subsequently, CNC entrained inactivated algal cells to settle to the bottom to achieve efficient removal of P. globosa. The content of total organic carbon (TOC) and chemical oxygen demand (COD) decreased significantly, indicating that a low emission risk of algal cell effluent was produced in the CNC-PMS system. In view of the excellent performance on P. globosa removal, we believe that the CNC-PMS system has great potential for HABs treatments.

4.
ACS Appl Mater Interfaces ; 15(25): 30106-30116, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37319265

RESUMO

The postsynthetic modification of metal-organic frameworks (MOFs) has opened up a promising area to widen their water treatment application. However, their polycrystalline powdery state still restricts their widespread industrial-scale applications. Herein, the magnetization of UiO-66-NH2 is reported as a promising approach to facilitate the separation of the used MOFs after water treatment. A two-step postmodification procedure employing 2,4,6-trichloro-1,3,5-triazine (TCT) and 5-phenyl-1H-tetrazole (PTZ) agents was introduced to level up the adsorption performance of the magnetic nanocomposite. Despite a decrement in porosity and specific surface area of the designed MOFs (m-UiO-66-TCT) compared to neat UiO-66-NH2, it outweighs in adsorption capacity. It was observed that m-UiO-66-TCT has an adsorption capacity of ≈298 mg/g for methyl orange (MO) with facile MOF separation using an external magnet. Pseudo-second-order kinetic model and Freundlich isotherm models suitably interpret the experimental data. Thermodynamic studies showed that MO removal using m-UiO-66-TCT is spontaneous and thermodynamically favorable at higher temperatures. The m-UiO-66-TCT composite exhibited easy separation, high adsorption capacity, and good recyclability, rendering it an attractive candidate for the adsorptive removal of MO dye from aqueous environments.

5.
RSC Adv ; 13(3): 1594-1605, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688072

RESUMO

To improve the efficiency of photocatalytic oxidative degradation of antibiotic pollutants, it is essential to develop an efficient and stable photocatalyst. In this study, a polymer-assisted facile synthesis strategy is proposed for the polymorph-controlled α-Bi2O3/Bi2O2CO3 heterojunction retained at elevated calcination temperatures. The p-n heterojunction can effectively separate and migrate electron-hole pairs, which improves visible-light-driven photocatalytic degradation from tetracycline (TC). The BO-400@PAN-140 photocatalyst achieves the highest pollutant removal efficiency of 98.21% for photocatalytic tetracycline degradation in 1 h (λ > 420 nm), and the degradation efficiency was maintained above 95% after 5 cycles. The morphology, crystal structure, and chemical state of the composites were analysed by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Ultraviolet-visible diffuse reflection, transient photocurrent response, and electrochemical impedance spectroscopy were adopted to identify the charge transfer and separation efficiency of photogenerated electron-hole pairs. The EPR results verified h+ and ˙OH radicals as the primary active species in the photocatalytic oxidation reactions. This observation was also consistent with the results of radical trapping experiments. In addition, the key intermediate products of the photocatalytic degradation of TC over BO-400@PAN-140 were identified via high-performance liquid chromatography-mass spectrometry, which is compatible with two possible photocatalytic reaction pathways. This work provides instructive guidelines for designing heterojunction photocatalysts via a polymer-assisted semiconductor crystallographic transition pathway for TC degradation into cleaner production.

6.
Energy (Oxf) ; 264: 126096, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36407968

RESUMO

The rate of Biomedical waste generation increases exponentially during infectious diseases, such as the SARS-CoV-2 virus, which burst in December 2019 and spread worldwide in a very short time, causing over 6 M casualties worldwide till May 2022. As per the WHO guidelines, the facemask has been used by every person to prevent the infection of the SARS-CoV-2 virus and discarded as biomedical waste. In the present work, a 3-ply facemask was chosen to be treated using the solvent, which was extracted from the different types of waste plastics through the thermal-catalytic pyrolysis process using a novel catalyst. The facemask was dispersed in the solvent in a heating process, followed by dissolution and precipitation of the facemask in the solvent and by filtration of the solid facemask residue out of the solvent. The effect of peak temperature, heating rate, and type of solvent is observed experimentally, and it found that the facemask was dissolved completely with a clear supernate in the solvent extracted from the (polypropylene + poly-ethylene) plastic also saved energy, while the solvent from ABS plastic was not capable to dissolute the facemask. The potential of the presented approach on the global level is also examined.

7.
Energy (Oxf) ; 241: 122801, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36570560

RESUMO

This review covers the recent advancements in selected emerging energy sectors, emphasising carbon emission neutrality and energy sustainability in the post-COVID-19 era. It benefited from the latest development reported in the Virtual Special Issue of ENERGY dedicated to the 6th International Conference on Low Carbon Asia and Beyond (ICLCA'20) and the 4th Sustainable Process Integration Laboratory Scientific Conference (SPIL'20). As nations bind together to tackle global climate change, one of the urgent needs is the energy sector's transition from fossil-fuel reliant to a more sustainable carbon-free solution. Recent progress shows that advancement in energy efficiency modelling of components and energy systems has greatly facilitated the development of more complex and efficient energy systems. The scope of energy system modelling can be based on temporal, spatial and technical resolutions. The emergence of novel materials such as MXene, metal-organic framework and flexible phase change materials have shown promising energy conversion efficiency. The integration of the internet of things (IoT) with an energy storage system and renewable energy supplies has led to the development of a smart energy system that effectively connects the power producer and end-users, thereby allowing more efficient management of energy flow and consumption. The future smart energy system has been redefined to include all energy sectors via a cross-sectoral integration approach, paving the way for the greater utilization of renewable energy. This review highlights that energy system efficiency and sustainability can be improved via innovations in smart energy systems, novel energy materials and low carbon technologies. Their impacts on the environment, resource availability and social well-being need to be holistically considered and supported by diverse solutions, in alignment with the sustainable development goal of Affordable and Clean Energy (SDG 7) and other related SDGs (1, 8, 9, 11,13,15 and 17), as put forth by the United Nations.

8.
Biomass Convers Biorefin ; : 1-16, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36337935

RESUMO

Hospital wastewater treatment is gaining attention in recent studies due to its complex nature. The performance of the sequencing batch reactor coupled with tube-settler was investigated for hospital wastewater treatment. The performance was evaluated regarding removing organic matter and nutrients (nitrate and phosphate). The phosphate was removed in the sequencing batch reactor and its associated tube-settler with a 60% removal efficiency margin. Nitrification was observed in sequencing batch reactor and tube-settler, but denitrification could not be achieved. The nitrification-denitrification process was not completed during the process. The current work's main aim was to understand and optimise the operational parameters involved in the performance of the sequencing batch reactor. The operational parameters were optimised using Design expert software, and Response Surface Methodology involved a four-factor and five-level central composite design. The percentage removal of chemical oxygen demand, nitrate, and phosphate was selected to be observed during this study. Supplementary Information: The online version contains supplementary material available at 10.1007/s13399-022-03406-z.

9.
Chemosphere ; 309(Pt 1): 136622, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181837

RESUMO

Lubricants operate as antifriction media, preserving machine reliability, facilitating smooth operation, and reducing the likelihood of frequent breakdowns. The petroleum-based reserves are decreasing globally, leading to price increases and raising concerns about environmental degradation. The researchers are concentrating their efforts on developing and commercializing an environmentally friendly lubricant produced from renewable resources. Biolubricants derived from nonedible vegetable oils are environmentally favorable because of their non-toxicity, biodegradability, and close to net zero greenhouse gas emissions. The demand for bio lubricants in industry and other sectors is increasing due to their non-toxic, renewable, and environmentally friendly nature. Good lubrication, anti-corrosion, and high flammability are characteristic properties of vegetable oils due to their unique structure. This study presents several key properties of nonedible oils that are used to produce lubricants via the transesterification process. Bibliometric analysis is also performed, which provides us with a better understanding of previous studies related to the production of bio lubricants from the transesterification process. Only 371 published documents in the Scopus database were found to relate to the production of bio lubricants using the transesterification process. The published work was mostly dominated by research articles (286; 77.088%). Significant development can be seen in recent years, with the highest occurrence in 2021, reaching 68 publications accounting for 18.38% of the total documents. In the second step, (i) the authors with the most number of publications; (ii) journals with the most productions; (iii) most productive countries; and (iv) the authors' most frequently used keywords were evaluated. These results will provide a pathway for researchers interested in this field. Lastly, recommendation is made on research gaps to device possible strategies for its commercialization.


Assuntos
Gases de Efeito Estufa , Petróleo , Reprodutibilidade dos Testes , Lubrificantes/química , Óleos de Plantas
10.
J Environ Manage ; 322: 116030, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36081264

RESUMO

Policymakers and officials worldwide are making more stringent environmental norms and waste disposal policies to encourage industries to move towards cleaner production. One of the main challenges that industries face moving towards cleaner production is the adoption of different strategies for optimising their resource utilisation and waste reduction economically. This is particularly challenging for large-scale industries or a group of industrial plants located in an industrial region. This paper presents a novel approach to economic resource optimisation focussed mainly on large-scale industries, different industrial plants located in the vicinity of each other, or an industrial symbiosis network. In this work, a clustering algorithm is developed to segregate the given plants into different clusters based on the concept of load deficits and surpluses of each plant. The concept ideally allows only the plants with surpluses to send out their unused sources and plants with deficits to only receive external sources/resources. The clusters are formed based on the distances between plants, which in turn helps in saving transportation and communication costs. The clustered plants are then easy to optimise and manage for resource and cost optimality. The applicability of the proposed clustering algorithm is demonstrated using two case studies from the domain of water recycling networks containing multiple contaminants with detailed network design, highlighting the importance of clustering in an industrial symbiosis network. It is observed that directing the excess flows from one plant to other plants in the same cluster can save a considerable amount of fresh resources. It implies that in the broader aspect, the developed methodology can address the optimisation of economic resources and can aid in the better management of overall resources for a large-scale industrial symbiosis network.


Assuntos
Conservação dos Recursos Naturais , Indústrias , Análise por Conglomerados , Conservação dos Recursos Naturais/métodos , Alocação de Recursos , Água
11.
Chemosphere ; 305: 135247, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35688196

RESUMO

The significant issue affecting wastewater treatment is human faeces containing SARS-CoV-2. SARS-CoV-2, as a novel coronavirus, has expanded globally. While the current focus on the COVID-19 epidemic is rightly on preventing direct transmission, the risk of secondary transmission via wastewater should not be overlooked. Many researchers have demonstrated various methods and tools for preventing and declining this virus in wastewater treatment, especially for SARS-CoV-2 in human faeces. This research reports two people tested for 30 d, with written consent, at Mosa-Ebne-Jafar Hospital of Quchan, Iran, from September 1st to October 9th, 2021. The two people's conditions are the same. The Hyssop plant was used, which boosts the immune system's effectiveness and limonene, rosemary, caffeic acids and flavonoids, all biologically active compounds in this plant, cause improved breathing problems, colds, and especially for SARS-CoV-2. As a result, utilising the Hyssop plant can help in reducing SARS-CoV-2 in faeces. This plant's antioxidant properties effectively reduce SARS-CoV-2 in faeces by 30%; nevertheless, depending on the patient's condition. This plant is also beneficial for respiratory and digestive health.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Fezes , Humanos , Hyssopus , Esgotos , Águas Residuárias
12.
Chemosphere ; 303(Pt 1): 134749, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35490754

RESUMO

Groundwater is the second largest water source for daily consumption, only next to surface water resources. Groundwater has been extensively investigated for its pollution level in urban areas. The groundwater quality assessments in industrial areas associated with every urban landscape are still lacking. This study was carried out in two industrial areas including Okhla and Mohan cooperative in New Delhi, India. The six groundwater samples were obtained for water quality assessment for 2015 and 2018. The heavy metals investigated in water samples were Cu, As, Pb, Mn, Ni, Zn, Fe, Cr, and Mn. The water quality was assessed in the heavy metals index (MI) and heavy metal pollution index (HPI). From indexing approach, it was observed that pollution levels have increased in year 2018 as compared to the year 2015. MI < 1 for Cu in 2015 and 2018 in both industrial areas. In the case of remaining metals, MI ranged from 2.5 to 8.4. When the HPI indexing approach was adopted, water was unfit for drinking in both industrial areas in 2015 and 2018, with an HPI value > 100. Non-carcinogenic risk assessment (HI) ranged from 1.7 to 1.9 in 2015, increasing from 17.41 to 217 in 2018, indicating high risk in both years. Carcinogenic risk (CR) was within the acceptable range for 48% of each heavy metal analysed sample. When the Carcinogenic risk index was considered (CRI), all samples were beyond the acceptable range, and every person was prone to carcinogenic risk in 2015.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Carcinógenos/análise , Monitoramento Ambiental , Água Subterrânea/análise , Humanos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
13.
Sci Total Environ ; 837: 155829, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561899

RESUMO

The world has been grappling with the crisis of the COVID-19 pandemic for more than a year. Various sectors have been affected by COVID-19 and its consequences. The waste management system is one of the sectors affected by such unpredictable pandemics. The experience of COVID-19 proved that adaptability to such pandemics and the post-pandemic era had become a necessity in waste management systems and this requires an accurate understanding of the challenges that have been arising. The accurate information and data from most countries severely affected by the pandemic are not still available to identify the key challenges during and post-COVID-19. The documented evidence from literature has been collected, and the attempt has been made to summarize the rising challenges and the lessons learned. This review covers all raised challenges concerning the various aspects of the waste management system from generation to final disposal (i.e., generation, storage, collection, transportation, processing, and burial of waste). The necessities and opportunities are recognized for increasing flexibility and adaptability in waste management systems. The four basic pillars are enumerated to adapt the waste management system to the COVID-19 pandemic and post-COVID-19 conditions. Striving to support and implement a circular economy is one of its basic strategies.


Assuntos
COVID-19 , Eliminação de Resíduos , Gerenciamento de Resíduos , COVID-19/epidemiologia , Humanos , Pandemias , Resíduos Sólidos/análise
14.
J Environ Manage ; 314: 115015, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421718

RESUMO

Industrial parks provide opportunities for Process Integration among different enterprises. Inter-Plant Water Network Integration is an effective strategy for water conservation. However, increased interplant linkages can make the entire system vulnerable to cascading failures in case of loss of water flow in some plants. The potential indirect impact of water shortages on such integrated systems may not be evident without the use of appropriate models. This work defines inoperability as the fractional loss of water flow relative to normal operations. A comparison between the applicability of demand-driven versus supply-driven Inoperability Input-output Model (IIM) is conducted. Then, a Vulnerability Assessment Framework which integrates vulnerability indicators into the Dynamic Input-Output Model (DIIM) is developed to analyse failure propagation in water networks in an industrial park. The DIIM is then applied to simulate the cascading effects of disturbances. From a time perspective, the vulnerabilities of the industrial parks With Integrated Optimal Water Network (WWN) and Without Integrated Optimal Water Network (WOWN) are assessed considering robustness, adaptability, and recoverability as the indicators. The results indicate that supply-driven IIM is more suitable for cascading failure analysis of water networks. The average inoperability at 16% from supply-driven IIM is higher than that from demand-driven IIM. In the freshwater disturbance scenario, the dependence of the plant on freshwater is proportional to the rate of inoperability change, the time to reach a new equilibrium. In this study, the robustness of WWN is about fivefold that of WOWN, but the recovery rate is only one-sixth of the latter. This work can help identify system vulnerabilities and provide a scientific insight for the development of park-wide water management strategies.


Assuntos
Indústrias , Água , Abastecimento de Água
15.
J Environ Manage ; 314: 115024, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447447

RESUMO

This paper examines and projects the water use and wastewater generation during and after the SARS-CoV-2 (COVID-19) in China, and discussed the water use/wastewater generation pattern changes among different sectors. Existing studies on the impact of pandemic spread-prevention measures on water consumption and wastewater treatment during the pandemic are reviewed. The water use and wastewater discharge in China through the COVID-19 period are then projected and analyzed using Multivariate Linear Regression. The projection is carried out for years 2019-2023 and covers an (estimated) full process of pre-pandemic, pandemic outbreak, and recovery phase and provides essential information for determining the complete phase impact of the COVID-19. Two scenarios, i.e. the recovery scenario and the business as usual scenario, are set to investigate the water use and wastewater generation characteristics after the pandemic. The results imply that in both scenarios, the water use in China shows a V-shaped trend from 2019 to 2023 and reached a low point in 2020 of 5,813✕108 m3. The wastewater discharge shows an increasing trend throughout the COVID period in both scenarios. The results are also compared with the water consumption and wastewater generation during the SARS-CoV-1 period. The implication for policymakers is the possible increase of water use and wastewater discharge in the post COVID period and the necessity to ensure the water supply and control of water pollution and wastewater discharge.


Assuntos
COVID-19 , COVID-19/epidemiologia , China/epidemiologia , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Águas Residuárias , Água
16.
Waste Manag ; 144: 221-232, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35397419

RESUMO

Due to rapid economic development and urbanisation, emerging megacities with dense populations have witnessed a significant increase in waste generation. Megacities face challenges in developing sustainable waste management systems. Considerable heterogeneity exists across megacities in management strategies. The two selected emerging megacities, Singapore (a city-state) and Shanghai, have similar developmental characteristics, but their waste management modes differ strikingly. This study assessed the two modes in terms of management strategies, environmental effects, economic costs, and social outcomes. Environmental footprint analysis and cost quantification were employed for the assessment based on public data. The research results would permit a deeper understanding of the long-term sustainability of each mode while considering the feasibility of implementation across different contexts. It was found that the waste management system in Singapore had a relatively lower environmental impact than Shanghai before Shanghai's new waste segregation and recycling policy in 2019. However, when the effect of fossil fuel substitution is taken into account, the environmental burden in Shanghai can be lowered more substantially than the one in Singapore. Although Shanghai had more economic burden for the waste segregation at source, it tended to implement the circular economy principles (e.g., reduce, reuse, and recycling) better and improve its sense of community significantly. Based on the practical experiences from the two representative megacities, suggestions for better waste management practices were provided for Singapore, Shanghai, and other emerging megacities with similar circumstances. In addition, challenges and opportunities related to household waste segregation and recycling were identified to guide future practices in emerging megacities.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , China , Cidades , Reciclagem , Singapura , Resíduos Sólidos/análise
17.
J Environ Manage ; 312: 114890, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313151

RESUMO

This work aims to extend the previous Pinch Analysis framework to the industrial site material recycling network with site headers synthesis from single quality to multiple qualities. The analysis provides guided resources management strategy in any eco-industrial park to reduce the reliance on raw resources that are extracted from the environment. The Pinch Point(s) are first identified for the overall network using the Material Recovery Pinch Diagram for all the qualities. The guideline for the cross-plant material sources transfer is then built upon the concept of the Pinch Point(s) for all the qualities to minimise the cross-plant source transfer or a number of connections. An iterative header targeting framework is then proposed to determine the flowrates and the qualities of the headers. Two case studies, which have single and multiple qualities Total Site water recycling network, are used to demonstrate the proposed framework, comparing results obtained using direct integration and centralised headers. The single quality case results in 4.1% lower fresh resource intake compared to without cross-transfer, while the multiple qualities case could have 5.3% lower fresh resources for two and three plants scenarios. This framework provides a proper analysis of the problem, which allows users to gain insights on the effective cross-plant source transfer schemes with headers constraint by resource qualities.


Assuntos
Conservação dos Recursos Naturais , Água , Conservação dos Recursos Naturais/métodos , Indústrias
18.
J Clean Prod ; 347: 131268, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287337

RESUMO

This study aims to investigate blockchain technology for agricultural supply chains during the COVID-19 pandemic. Benefits and solutions are identified for the smooth conduction of agricultural supply chains during COVID-19 using blockchain. This study uses interviews with agricultural companies operating in Pakistan. The findings discover the seven most commonly shared benefits of applying blockchain technology, four major challenges, and promising solutions. About 100% of the respondents mentioned blockchain as a solution for tracking the shipment during COVID-19, data retrieval and data management, product and transaction frauds, and an Inflexible international supply chain. Roughly 75% of the respondents mentioned the challenge of lack of data retrieval and data management and the Inflexible international supply chain in COVID-19 besides their solutions. This study can expand existing knowledge related to agricultural supply chains. The experiences shared in this study can serve as lessons for practitioners to adopt the blockchain technology for performing agricultural supply chain during pandemic situations such as COVID-19.

19.
J Environ Manage ; 311: 114779, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245839

RESUMO

Chemical absorption method plays an important role in the process of CO2 separation. One major problem for chemical absorption is huge energy consumption, which is affected by the performance of absorbents. Developing a type of absorbent with high absorption capacity and low regenerative energy consumption is a research topic that attracts attention. The combination of two or more amines is one way to develop new solvents. However, the change of amine liquid ratio can cause a series of complex nonlinear changes in absorption capacity, absorption heat, the heat of vaporisation and sensible heat. It is of interest to visualise the amine solution mixing ratio optimisation to help reduce the energy consumption and increase the absorption capacity. Derivative analysis of standardised vs variables diagram (DSVD), a kind of graphical method based on maximum benefit and minimum consumption, is proposed to determine the optimal mixing ratio of binary amine solution. This novel approach helps to visualise what kind of amines are not suitable for compounding, what kind of amines have the best compounding ratio, and how to determine the optimal compounding ratio. The optimal mixing ratio of the Methyldiethanolamine (MDEA) - Piperazine (PZ) system and MDEA - Monoethanolamine (MEA) were optimised by this method. The optimal ratio of MDEA - PZ and MDEA - MEA are 0.6 (PZ: MDEA = 0.6:0.4, wt.%) and 0.8 (MEA: MDEA = 0.8:0.2, wt.%).

20.
J Environ Manage ; 304: 114251, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933266

RESUMO

The requirement of carbon emission reduction promotes the continuous implementation and development of low carbon emission mode in typical high-carbon industry aquaculture, especially in the resourceful treatment of terminal waste. However, the previous studies usually focus on a single process or chain, the difference between the long-chain (LC) and automated integration (AI) in the overall environmental impact needs to be quantified and standardised. This paper intends to make a comparative study on two waste treatment biogas projects of aquaculture, a typical industry with high resource consumption and pollution emission in industry and agriculture, and a typical production mode case of aquaculture. The life cycle assessment method is adopted to analyse the environmental impact intensity, identify key link materials, and put forward targeted improvement and optimization schemes. The study found the LC system's comprehensive environmental impact (CEI) is smaller, which is 59.73% less than the AI system. Biogas slurry returning to the field can effectively avoid inorganic fertilizer input. The pretreatment and storage of feces are the key stages. The key substances are NH3 and nitrogen oxides. Suggestions were put forward to optimize the manure management process. In practical pig farms, the process of dry-cleaning manure pre-treatment, automatic fermentation gas production and final biogas slurry filtration drip irrigation should be promoted.


Assuntos
Biocombustíveis , Carbono , Animais , Fezes , Estágios do Ciclo de Vida , Esterco , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...